Operator Splitting for Parallel and Distributed Optimization

Wotao Yin

(UCLA Math)

Shanghai Tech, SSDS'15 — June 23, 2015

 $URL: \ alturl.com/2z7tv$

What is "splitting"?

- Sun-Tzu: "远交近攻", "各个击破" (400 BC)
- Caesar: "divide-n-conquer" (100–44 BC)
- splitting in computing:
 - **break** a problem \rightarrow separate parts
 - solve the separate parts o sub-solutions
 - combine the sub-solutions in a controlled fashion

Some basic principles of splitting

- split x/y directions
- split convection from diffusion in differential equations
- split linear from nonlinear
- domain decomposition
- Bender's decomposition, column generation
- split smooth from nonsmooth
- split objective functions and constraints in optimization
- split composite operators

Monotone operator-splitting pipeline

- 1. recognize the simple parts in your problem
- 2. build an equivalent monotone-inclusion problem: $0 \in Ax$ (the simple parts are separately placed in A)
- 3. apply an operator-splitting scheme: $0 \in Ax \Longrightarrow z = Tz$ (the simple parts become sub-operators of T)
- 4. run the Krasnosel'skii-Mann (KM) iteration

$$z^{k+1} = z^k + \lambda (Tz^k - z^k), \quad \lambda \in (0, 1]$$

Example: LASSO (basis pursuit denoising)

• Tibshirani'96:

minimize
$$\frac{1}{2}||Ax - b||^2 + \lambda ||x||_1$$

2 simple parts: smooth + simple

- smooth function: $f(x) = \frac{1}{2} ||Ax b||^2$
- simple nonsmooth function: $r(x) = \lambda ||x||_1$
- equivalent condition: $0 \in \nabla f(x) + \partial r(x)$
- forward-backward splitting algorithm:

$$x^{k+1} = \underbrace{\mathbf{prox}_{\gamma r}(x^k - \gamma \nabla f(x^k))}_{T_{x^k}}$$

also known as the Iterative Soft-Thresholding Algorithm (ISTA)

Example: total variation (TV) deblurring

Rudin-Osher-Fatemi'92:

minimize
$$\frac{1}{2}||Ku - b||^2 + \lambda ||Du||_1$$
subject to $0 \le u \le 255$

4 simple parts: smooth + simple ∘ linear + simple

- smooth function: $f(u) = \frac{1}{2} ||Ku b||^2$
- linear operator: D
- simple nonsmooth function: $r_1 = \lambda \| \cdot \|_1$
- simple indicator function: $r_2=\iota_{[0,255]}$

(We only show the results, skipping the details)

equivalent condition:

$$0 \in \begin{bmatrix} \partial r_2 & D^* \\ -D & \partial r_1^* \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} + \begin{bmatrix} \nabla f & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix}$$

(where w is the auxiliary (dual) variable)

forward-backward splitting algorithm under a special metric:

$$u^{k+1} = \mathbf{proj}_{[0,255]^n}(u^k - \gamma D^* w^k - \gamma \nabla f(u^k))$$

$$w^{k+1} = \mathbf{prox}_{\gamma \ell_{\infty}}(w^k + \gamma D(2u^{k+1} - u^k))$$

every step is simple to implement

Simple parts

Simple parts

- linear maps (e.g., matrices, finite differences, orthogonal transforms)
- differentiable functions
- (non-differentiable) functions that have simple **proximal maps**
- sets that are easy to project to

Abstraction: we look for monotone maps which have certain simple operators

Monotone map

• $A: \mathcal{H} \to \mathcal{H}$ is monotone if

$$\langle Ax - Ay, x - y \rangle \ge 0, \quad \forall x, y \in \mathcal{H}$$

• extend to set-valued $A: \mathcal{H} \to 2^{\mathcal{H}}$:

$$\langle p - q, x - y \rangle \ge 0, \quad \forall x, y \in \mathcal{H}, \ p \in Ax, \ q \in Ay$$

- examples:
 - a positive semi-definite linear map
 - a skew-symmetric linear map: $\langle Ax, x \rangle = 0, \quad \forall x \in \mathcal{H}$
 - ∂f : subdifferential of a proper closed convex function f

Forward operator

- require: A is monotone and either Lipschitz or cocoercive¹
- definition: $\mathbf{fwd}_{\gamma A} := (I \gamma A)$
- examples:
 - forward Euler for $\dot{y} + g(t, y) = 0$:

$$y^{t+1} = y^t - h \cdot g(t, y^t) = (I - h \cdot g(t, \cdot))y^t$$

• gradient descent for $\min f(x)$:

$$x^{k+1} = x^k - \gamma \nabla f(x^k) = (I - \gamma \nabla f)x^k$$

• equivalent conditions: $0 \in Ax \iff x = (I - \gamma A)x$

 $^{^{1}\}langle Ax-Ay,x-y\rangle\geq \beta\|Ax-Ay\|^{2},\ \forall x,y\in\mathcal{H}.$ If A is β -cocoercive, then A is $1/\beta$ -Lipschitz. The reverse is generally untrue.

Backward operator

- ullet require: A is monotone
- definition: $J_{\gamma A} := (I + \gamma A)^{-1}$
- equivalent conditions:: $0 \in Ax \Leftrightarrow x \in x + \gamma Ax \Leftrightarrow x = J_{\gamma A}x$ even if A is set-valued, $J_{\gamma A}$ is single-valued
- examples:
 - regularized matrix inversion
 - backward Euler
 - proximal map, including projection as a special case

Proximal map

- require: a proper closed convex function f
- definition:

$$\mathbf{prox}_{\gamma f}(y) = \underset{x}{\operatorname{arg\,min}} \ f(x) + \frac{1}{2\gamma} \|x - y\|^2$$

the minimizer must satisfy:

$$0 \in \gamma \partial f(x^*) + (x^* - y) \iff x^* = (I + \gamma \partial f)^{-1}(y) = J_{\gamma \partial f}(y)$$

therefore, $\mathbf{prox}_{\gamma f} \equiv J_{\gamma \partial f} \equiv (I + \gamma \partial f)^{-1}$

proximal-point algorithm (PPA):

$$x^{k+1} = \mathbf{prox}_{\gamma f}(x^k)$$

converges a minimizer of f, if it exists

Reflective backward operator

- require: A is monotone
- **definition**: $R_{\gamma A} := 2J_{\gamma A} I$
 - ""reflects" x through $J_{\gamma A}x$ by adding $J_{\gamma A}x-x$
- examples:
 - "mirror" or reflective projection: $\mathbf{refl}_C = 2\mathbf{proj}_C I$
 - ullet reflective proximal map: for closed proper convex function f

$$R_{\gamma\partial f} = 2J_{\gamma\partial f} - I = 2\mathbf{prox}_{\gamma f} - I$$

Operator splitting

Monotone inclusion

- A_1, \ldots, A_m are monotone, either single- or set-valued, $m \geq 1$
- operator-splitting solves

$$\boxed{\mathbf{0} \in A_1 x + \dots + A_m x}$$

by constructing an operator $T_{A_1,...,A_m}:\mathcal{H}\to\mathcal{H}$, based on the simple operators of A_1,\ldots,A_m and running the iteration

$$z^{k+1} = T_{A_1,...,A_m}(z^k)$$

The "big three" operator-splitting schemes

 $0 \in Ax + Bx$

- Douglas-Rachford (Lion-Mercier'79) for (maximally monotone) + (maximally monotone)
- forward-backward (Mercier'79) for (maximally monotone) + (cocoercive)
- forward-backward-forward (Tseng'00) for (maximally monotone) + (Lipschitz & monotone)
- all the schemes are built from forward operators and backward operators
- the first two have been reinvented many times
 (in some cases, the reduction not obvious and gone unnoticed)

Forward-backward splitting

- require: A maximally monotone, B cocoercive (thus single-valued)
- forward-backward splitting (FBS) operator (Lion-Mercier'79)

$$T_{\mathrm{FBS}} := J_{\gamma A} \circ (I - \gamma B)$$

- reduces to forward operator if A=0, and backward operator if B=0
- equivalent conditions:

$$0 \in Ax + Bx \iff x = T_{\text{FBS}}(x)$$

- backward-forward splitting (BFS) operator $T_{\mathrm{BFS}} := (I - \gamma B) \circ J_{\gamma A}$, then

$$0 \in Ax + Bx \iff z = T_{BFS}(z), \ x = J_{\gamma A}z$$

Douglas-Rachford splitting

- require: A, B both monotone
- Douglas-Rachford splitting (DRS) operator (Lion-Mercier'79)

$$T_{\rm DRS} := \frac{1}{2}I + \frac{1}{2}R_{\gamma A} \circ R_{\gamma B}$$

note: switching A and B gives a different DRS operator

• (relaxed) **Peaceman-Rachford splitting (PRS)** operator, $\lambda \in (0,1]$:

$$T_{\text{PRS}}^{\lambda} := (1 - \lambda)I + \lambda R_{\gamma A} \circ R_{\gamma B}$$

also, $T_{\rm PRS} = T_{\rm PRS}^1$

• equivalent conditions:

$$0 \in Ax + Bx \iff z = T_{PRS}^{\lambda}(z), \ x = J_{\gamma B}z$$

Forward-backward-forward splitting

- require: A maximally monotone, B monotone and β -Lipschitz, $\beta>0$
- useful when B is Lipschitz but not cocoercive (e.g., skew symmetric, convex combination of operators)
- forward-backward-forward splitting (FBFS) operator (Tseng'00)

$$T_{\text{FBFS}} := I + (I - \gamma B) \circ J_{\gamma A} \circ (I - \gamma B) - (I - \gamma B)$$

- reduces to the backward operator if B=0, and to $I-\gamma B\circ (I-\gamma B)$ if A=0
- equivalent conditions: $\gamma \in (0, 1/\beta)$

$$0 \in Ax + Bx \iff x = T_{\text{FBFS}}(x)$$

A three-operator splitting scheme

- require: A, B maximally monotone, C cocoercive
- Davis and Yin'15:

$$T_{\text{DYS}} := I - J_{\gamma B} + J_{\gamma A} \circ (2J_{\gamma B} - I - \gamma C \circ J_{\gamma B})$$

(evaluating T_3z will evaluate $J_{\gamma A}$, $J_{\gamma B}$, and C only once each)

- reduces to BFS if A=0, FBS if B=0, and to DRS if C=0
- equivalent conditions:

$$0 \in Ax + Bx + Cx \iff z = T_3(z), \ x = J_{\gamma B}z$$

Abstraction: KM (Krasnosel'skii-Mann) iteration

- require: *T* is nonexpansive (1-Lipschitz)
- choose $\lambda > 0$ so that $T_{\lambda} = (1 \lambda) + \lambda T$ is an averaged operator
- KM iteration:

$$z^{k+1} = T_{\lambda} z^k$$

- special cases: $J_{\gamma A}$, $(I \gamma A)$, $T_{\rm FBS}$, $T_{\rm BFS}$, $T_{\rm DRS}$, $T_{\rm PRS}^{\lambda}$, and $T_{\rm DYS}$ (the step-size of any cocoercive map therein must be bounded)
- convergence: if $FixT \neq \emptyset$, then $z^k \rightharpoonup z^* \in FixT$.
- **divergence**: if $FixT = \emptyset$, then $(z^k)_{k \ge 0}$ goes unbounded.

Operator splitting: Direct application

Regularization least squares

$$\underset{x}{\operatorname{minimize}} \, r(x) + \underbrace{\frac{1}{2} \|Kx - b\|^2}_{f(x)}$$

- K: linear operator
- b: input data (observation)
- r: enforces a structure on x.
 examples: ℓ₂², ℓ₁, sorted ℓ₁, ℓ₂, TV, nuclear norm, . . .
- equivalent condition: $0 \in \partial r(x) + \nabla f(x)$
- forward-backward splitting iteration:

$$x^{k+1} = \mathbf{prox}_{\gamma r} \circ (I - \gamma \nabla f) x^k$$

Constrained minimization

lacksquare C is a convex set. f is a proper close convex function.

$$\begin{array}{ll}
\text{minimize } f(x) \\
\text{subject to } x \in C
\end{array}$$

equivalent condition:

$$0 \in N_C(x) + \partial f(x)$$

• if f is Lipschitz differentiable, then apply forward-backward splitting

$$x^{k+1} = \mathbf{proj}_C \circ (I - \gamma \nabla f) x^k$$

recovers the projected gradient method

• if f is non-differentiable, then apply **Douglas-Rachford splitting (DRS)**

$$z^{k+1}=\big(\frac{1}{2}I+\frac{1}{2}(2\mathbf{prox}_{\gamma f}-I)\circ (2\mathbf{proj}_C-I)\big)z^k$$
 (where $x^k=\mathbf{proj}_Cz^k$)

• dual approach: introduce x - y = 0 and apply **ADMM** to

minimize
$$f(x) + \iota_C(y)$$

subject to $x - y = 0$.

(indicator function $\iota_C(y) = 0$, if $y \in C$, and ∞ otherwise.)

• equivalence: the ADMM iteration = the DRS iteration

Multi-function minimization

• $f_1, \ldots, f_m : \mathcal{H} \to (-\infty, \infty]$ are proper closed convex functions.

$$\min_{x} \inf_{x} f_1(x) + \dots + f_N(x)$$

- product-space trick:
 - introduce copies $x_{(i)} \in \mathcal{H}$ of x; let $\mathbf{x} = (x_{(1)}, \dots, x_{(N)}) \in \mathcal{H}^N$
 - let $C = \{ \mathbf{x} : x_{(1)} = \dots = x_{(N)} \}$
 - equivalent problem in \mathcal{H}^N :

$$\underset{\mathbf{x}}{\text{minimize}} \ \iota_C(\mathbf{x}) + \sum_{i=1}^N f_i(x_{(i)})$$

then apply two-operator splitting scheme

Operator splitting: Dual application

Duality

- convex (and some nonconvex) optimization problems have two perspectives: the primal problem and the dual problem
- duality brings us:
 - alternative or relaxed problems, lower bounds
 - certificates for optimality or infeasibility
 - economic interpretations
- duality + operator splitting:
 - decouples objective functions and constraints' components
 - gives rise to parallel and distributed algorithms

Lagrange duality

original problem:

$$\underset{x}{\text{minimize }} f(x) \quad \text{subject to } Ax = b.$$

relaxations:

$$\begin{aligned} & \text{Lagrangian:} \quad L(x;w) &:= f(x) + w^T (Ax - b) \\ & \text{augmented Lagrangian:} \quad L(x;w,\gamma) := f(x) + w^T (Ax - b) + \frac{\gamma}{2} \|Ax - b\|^2 \end{aligned}$$

dual function:

$$d(w) = -\min_{x} L(x; w)$$

(d is always convex, even if f is not)

dual problem:

$$\underset{w}{\text{minimize}} \ d(w)$$

Monotropic programs

definition:

minimize
$$f_1(x_1) + \cdots + f_m(x_m)$$

subject to $A_1x_1 + \cdots + A_mx_m = b$.

where $f_i(x_i)$ may include $\iota_{C_i}(x)$ for constraint $x_i \in C_i$

- x_1, \ldots, x_m are separable in the objective and coupled in the constraints
- dual problem has the form

$$\underset{w}{\text{minimize}} \ d_1(w) + \dots + d_m(w)$$

where
$$d_i(w) := -\min_{x_i} f_i(x_i) + w^T (A_i x_i - \frac{1}{m} b)$$

Examples of monotropic programs

- linear programs
- $\bullet \min\{f(x) : Ax \in C\} \Leftrightarrow \min_{x,y}\{f(x) + \iota_C(y) : Ax y = 0\}$
- consensus problem $\min\{f_1(x_1)+\cdots+f_n(x_n):A\mathbf{x}=0\}$, where
 - $Ax = 0 \Leftrightarrow x_1 = \cdots = x_m$
 - ullet the structure of A enables distributed computing
- exchange problem

Dual (Lagrangian) decomposition

minimize
$$f_1(x_1) + \cdots + f_m(x_m)$$

subject to $A_1x_1 + \cdots + A_mx_m = b$.

• the variables x_1, \ldots, x_m are decoupled in the Lagrangian

$$L(x_1, ..., x_n; w) = \sum_{i=1}^{m} f_i(x_i) + w^T (A_i x_i - \frac{1}{m}b)$$

(but *not* so in the augmented Lagrangian for $\frac{\gamma}{2} ||A_1x_1 + \cdots + A_mx_m - b||^2$)

- let $\mathbf{A} = [A_1 \ \cdots \ A_m]$ and $\mathbf{x} = [x_1; \ldots; x_m]$
- the dual gradient iteration

$$\mathbf{x}^{k+1} = \operatorname*{arg\,min}_{\mathbf{x}'} L(\mathbf{x}'; w^k)$$

$$w^{k+1} = w - \gamma (b - \mathbf{A} \mathbf{x}^{k+1})$$

ullet the first step decouples to m separate subproblems

$$x_i^{k+1} = \underset{x_i'}{\arg\min} f_i(x_i') + w^{kT} (A_i x_i' - \frac{1}{m} b), \quad i = 1, \dots, m$$

• this decomposition requires strongly convex f_1,\ldots,f_m or, equivalently, Lipschitz differentiable d_1,\ldots,d_m

(dual PPA doesn't have this requirement, but the first step doesn't decouple either)

Dual forward-backward splitting

original problem:

$$\underset{x}{\text{minimize }} f_1(x) + f_2(y) \quad \text{subject to } A_1x_1 + A_2x_2 = b.$$

- require: strongly convex f_1 (thus Lipschitz ∇d_1)
- FBS iteration: $z^{k+1} = \mathbf{prox}_{\gamma d_2} (I \gamma \nabla d_1) z^k$
- express in terms of (augmented) Lagrangian:

$$\begin{aligned} x_1^{k+1} &= \underset{x_1'}{\arg\min} \ f_1(x_1') + w^{kT} A_1 x_1' \\ x_2^{k+1} &\in \underset{x_2'}{\arg\min} \ f_2(x_2') + w^{kT} A_2 x_2' + \frac{\gamma}{2} \|A_1 x_1^{k+1} + A_2 x_2' - b\|^2 \\ w^{k+1} &= w - \gamma (b - A_1 x_1^{k+1} - A_2 x_2^{k+1}) \end{aligned}$$

we have recovered Tseng's "Alternating Minimization Algorithm"

Dual Douglas-Rachford splitting

original problem:

$$\underset{x}{\text{minimize }} f_1(x) + f_2(y) \quad \text{subject to } A_1x_1 + A_2x_2 = b.$$

- no strong-convexity requirement
- DRS iteration: $z^{k+1}=\left(\frac{1}{2}I+\frac{1}{2}(2\mathbf{prox}_{\gamma d_2}-I)(2\mathbf{prox}_{\gamma d_1}-I)\right)z^k$
- express in terms of augmented Lagrangian:

$$x_1^{k+1} \in \arg\min_{x_1'} f_1(x_1') + w^{kT} A_1 x_1' + \frac{\gamma}{2} \|A_1 x_1' + A_2 x_2^k - b\|^2$$

$$x_2^{k+1} \in \arg\min_{x_2'} f_2(x_2') + w^{kT} A_2 x_2' + \frac{\gamma}{2} \|A_1 x_1^{k+1} + A_2 x_2' - b\|^2$$

$$w^{k+1} = w^k - \gamma (b - A_1 x_1^{k+1} - A_2 x_2^{k+1})$$

recover the Alternating Direction Method of Multipliers (ADMM)

Dual Davis-Yin splitting

• original problem, $m \geq 3$:

minimize
$$f_1(x_1) + \cdots + f_m(x_m)$$
 subject to $A_1x_1 + \cdots + A_mx_m = b$.

- require: strongly convex f_1, \ldots, f_{m-2}
- Davis-Yin'15 iteration: $z^{k+1} = T_3 z^k$ for $(d_1 + \cdots + d_{m-2}) + d_{m-1} + d_m$
- express in terms of (augmented) Lagrangian:

$$x_i^{k+1} = \operatorname*{arg\,min}_{x_i'} f_1(x_i') + w^{kT} A_i x_i', \quad i=1,\ldots m-2, \text{ independently}$$

$$x_{m-1}^{k+1} \in \underset{x'_{j}, j=m-1}{\operatorname{arg\,min}} f_{j}(x'_{j}) + w^{kT} A_{j} x'_{j} + \frac{\gamma}{2} \left\| \sum_{i=1}^{m-2} A_{i} x_{i}^{k+1} + A_{j} x'_{j} + A_{m} x_{m}^{k} - b \right\|^{2}$$

$$x_m^{k+1} \in \operatorname*{arg\,min}_{x_m'} f_m(x_m') + w^{kT} A_m x_m' + \frac{\gamma}{2} \left\| \sum_{i=1}^{m-1} A_i x_i^{k+1} + A_m x_m' - b \right\|^2$$

$$w^{k+1} = w^k - \gamma \left(b - \sum_{i=1}^{m} A_i x_i^{k+1} \right)$$

Dual operator splitting summary

- for problems with separable objective and coupling linear constraints
- each iteration: separate f_i subproblems + multiplier update
- Lagrangian x_i -subproblems require strongly convex f_i and can be solved in parallel
- augmented Lagrangian x_i -subproblems does not have the strong-convexity requirement but are solved in sequence

Operator splitting: Primal-dual application

Nonsmooth o linear composition

• **problem:** minimize nonsmooth ∘ linear + nonsmooth + smooth

$$\underset{x}{\text{minimize}} r_1(Lx) + r_2(x) + f(x)$$

equivalent condition:

$$0 \in (L^T \circ \partial r_1 \circ L + \partial r_2 + \nabla f)x$$

• **decouple** ∂r_1 **from** L: introduce

dual variable
$$y \in \partial r_1 \circ Lx \iff Lx \in \partial r_1^*(y)$$

equivalent condition:

$$0 \in \begin{bmatrix} 0 & L^T \\ -L & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \partial r_2(x) \\ \partial r_1^*(y) \end{bmatrix} + \begin{bmatrix} \nabla f(x) \\ 0 \end{bmatrix}$$

• equivalent condition (copied from last slide):

$$0 \in \underbrace{\begin{bmatrix} 0 & L^T \\ -L & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \partial r_2(x) \\ \partial r_1^*(y) \end{bmatrix}}_{Az} + \underbrace{\begin{bmatrix} \nabla f(x) \\ 0 \end{bmatrix}}_{Bz}$$

- primal-dual variable: $z = \begin{bmatrix} x \\ y \end{bmatrix}$.
- apply forward-backward splitting to $0 \in Az + Bz$:

$$\begin{split} z^{k+1} &= J_{\gamma A} \circ F_{\gamma B} z^k \\ \iff z^{k+1} &= (I + \gamma A)^{-1} (I - \gamma B) z^k \\ \iff \text{solve } \begin{cases} x^{k+1} + \gamma L^T y^{k+1} + \gamma \widetilde{\nabla} r_2(x^{k+1}) = x^k - \gamma \nabla f(x^k) \\ y^{k+1} - \gamma L x^{k+1} + \gamma \widetilde{\nabla} r_1^*(y^{k+1}) = y^k \end{cases} \end{split}$$

issue: both \boldsymbol{x}^{k+1} and \boldsymbol{y}^{k+1} appear in both equations!

• solution: introduce the metric

$$U = \begin{bmatrix} I & -\gamma L^T \\ -\gamma L & I \end{bmatrix} \succ 0$$

• apply forward-backward splitting to $0 \in U^{-1}Az + U^{-1}Bz$:

$$\begin{split} z^{k+1} &= J_{\gamma U^{-1}A} \circ F_{\gamma U^{-1}B} z^k \\ \iff z^{k+1} &= (I + \gamma U^{-1}A)^{-1} (I - \gamma U^{-1}B) z^k \\ \iff \text{solve } Uz^{k+1} + \gamma \tilde{A} z^{k+1} &= Uz^k - \gamma B z^k \\ \iff \begin{cases} x^{k+1} - \gamma L^T y^{k+1} + \gamma L^T y^{k+1} + \gamma \tilde{\nabla} r_2(x^{k+1}) &= x^k - \gamma L^T y^k - \gamma \nabla f(x^k) \\ y^{k+1} - \gamma L \ x^{k+1} &= \gamma L x^{k+1} + \gamma \nabla r_1^*(y^{k+1}) &= y^k - \gamma L \ x^k \end{cases} \end{split}$$

(like Gaussian elimination, \boldsymbol{y}^{k+1} is cancelled from the first equation)

- strategy: obtain x^{k+1} from the first equation; plug in x^{k+1} as a constant into the second equation and then obtain y^{k+1}
- final iteration:

$$x^{k+1} = \mathbf{prox}_{\gamma r_2}(x^k - \gamma L^T y^k - \gamma \nabla f(x^k))$$
$$y^{k+1} = \mathbf{prox}_{\gamma r_1^*}(y^k + \gamma L(2x^{k+1} - x^k))$$

- nice properties:
 - apply L and ∇f explicitly
 - solve proximal-point subproblems of r_1 and r_2
 - convergence follows from standard forward-backward splitting

Example: total variation (TV) deblurring

Rudin-Osher-Fatemi'92:

minimize
$$\frac{1}{2}||Ku - b||^2 + \lambda ||Du||_1$$
subject to $0 \le u \le 255$

4 simple parts: smooth + simple ∘ linear + simple

- smooth function: $f(u) = \frac{1}{2} ||Ku b||^2$
- linear operator: D
- simple nonsmooth function: $r_1 = \lambda \| \cdot \|_1$
- simple indicator function: $r_2 = \iota_{[0,255]}$

(We only show the results, skipping the details)

equivalent condition:

$$0 \in \begin{bmatrix} \partial r_2 & D^* \\ -D & \partial r_1^* \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} + \begin{bmatrix} \nabla f & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix}$$

(where w is the auxiliary (dual) variable)

forward-backward splitting algorithm under a special metric:

$$u^{k+1} = \mathbf{proj}_{[0,255]^n}(u^k - \gamma D^* w^k - \gamma \nabla f(u^k))$$

$$w^{k+1} = \mathbf{prox}_{\gamma \ell_{\infty}}(w^k + \gamma D(2u^{k+1} - u^k))$$

every step is simple to implement

Operator splitting: Parallel and distributed applications

Huge matrix A

- background: you wish to distribute a huge matrix A in your problem
- three schemes to distribute A:

$$\begin{bmatrix} -A_{(1)} \\ \vdots \\ -A_{(M)} - \end{bmatrix} \quad \begin{bmatrix} | & & | \\ A_1 & \cdots & A_N \\ | & & | \end{bmatrix} \quad \begin{bmatrix} A_{1,1} & \cdots & A_{1,N} \\ & \cdots & \\ A_{M,1} & \cdots & A_{M,N} \end{bmatrix}$$

scheme 1

scheme 2

scheme 3

• broadcast then parallelize: schemes 1 & 2:

$$Ax = \begin{bmatrix} A_{(1)}x \\ \vdots \\ A_{(M)}x \end{bmatrix} \quad \text{and} \quad A^Ty = \begin{bmatrix} A_1^Ty \\ \vdots \\ A_N^Ty \end{bmatrix}$$

• parallelize then reduce: schemes 1 & 2:

$$A^Ty = \sum_{i=1}^M A_{(i)}^T y_i \quad \text{and} \quad Ax = \sum_{j=1}^N A_j x_j$$

• broadcast, parallelize, then reduce: scheme 3:

$$Ax = \begin{bmatrix} \sum_{j=1}^{N} A_{1,j} x_j \\ \vdots \\ \sum_{j=1}^{N} A_{M,j} x_j \end{bmatrix} \quad \text{and} \quad A^T y = \begin{bmatrix} \sum_{i=1}^{M} A_{i,1}^T y_i \\ \vdots \\ \sum_{i=1}^{M} A_{i,N} y_i \end{bmatrix}$$

choose a scheme baesd on the structures of functions/operators

example: convex and smooth f; convex r (possibly nonsmooth)

$$\underset{x}{\text{minimize}} \ r(x) + f(Ax)$$

- case 1: scheme 1 for separable f, that is, $f(Ax) = \sum_{i=1}^m f_i(A_{(i)}x)$ apply forward-backward splitting

$$x^{k+1} = \mathbf{prox}_{\gamma r}(x^k - \gamma A^T \nabla f(Ax^k))$$
$$= \mathbf{prox}_{\gamma r} \left(x^k - \gamma \sum_{i=1}^M A_{(i)}^T \nabla f_i(A_{(i)}x^k)\right)$$

we can distribute/parallelize $A_{(i)}^T
abla f_i(A_{(i)}x^k)$

• scenario 2: scheme 2 for separable r

$$\mathbf{prox}_{\gamma_T}(y) = \begin{bmatrix} \mathbf{prox}_{\gamma_{T_1}}(y_1) \\ \vdots \\ \mathbf{prox}_{\gamma_{T_N}}(y_N) \end{bmatrix}$$

apply forward-backward splitting:

$$x^{k+1} = \mathbf{prox}_{\gamma r}(x^k - \gamma A^T \nabla f(Ax^k))$$

$$\iff \begin{cases} \mathsf{cache} \ g = \nabla f(Ax^k) \\ \begin{bmatrix} x_1^{k+1} \\ \vdots \\ x_N^{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{prox}_{\gamma r_1}(x_1^k - \gamma A_1^T g) \\ \vdots \\ \mathbf{prox}_{\gamma r_N}(x_N^k - \gamma A_N^T g) \end{bmatrix}$$

$$\mathsf{broadcast} \ g = \nabla f \Big(\sum_{j=1}^M A_j x_j^{k+1} \Big)$$

we distribute the computing of $A_j x_j^{k+1} = A_j \mathbf{prox}_{\gamma r_j} (x_j^k - \gamma A_j^T g)$ this is also known as *parallel coordinate descent* scenario 3: scheme 3 for separable f and r (we skip the details)

remarks:

- no introduction of extra variables, no sacrifice of convergence speed
- the principle also applies to other operator splitting schemes
- can be further accelerated by asynchronous parallelism

Duality and structure trade

- assume scheme 1: $A = \begin{bmatrix} -A_{(1)} \\ \vdots \\ -A_{(M)} \end{bmatrix}$
- primal problem: strongly-convex r and convex nonsmooth f_1,\ldots,f_m .:

$$\underset{w}{\text{minimize}} \ r(w) + \sum_{i=1}^{m} f_i(A_{(i)}w)$$

 $\textbf{structure} \colon \mathsf{strongly}\text{-}\mathsf{convex} + \sum \mathsf{nonsmooth} \circ \mathsf{linear}$

- let $f^*(y) = \sup_x \langle y, x \rangle f(x)$ denote the convex conjugate of f
- dual problem:

minimize
$$r^* \left(- \sum_{i=1}^m A_{(m)}^T y_i \right) + \sum_{i=1}^m f_i^*(y_i)$$

 $\textbf{dual structure} \colon \mathsf{smooth} \circ \mathsf{linear} + \sum \mathsf{nonsmooth}$

Example: support vector machine (SVM)

- given sample-label pairs (x_i, y_i) where $x_i \in \mathbb{R}^d$ and $y_i \in \{1, -1\}$
- primal problem:

minimize
$$\frac{1}{2} ||w||^2 + \sum_{i=1}^m \iota_{\mathbb{R}_+} (y_i(x_{(i)}^T w - b) - 1)$$

dual problem:

$$\underset{\alpha}{\operatorname{maximize}} \ \operatorname{quadratic}(\alpha) + \sum_{i=1}^{m} \iota_{\mathbb{R}_{+}}(\alpha_{i}) + \iota_{\{y_{1}\alpha_{1} + \dots + y_{m}\alpha_{m} = 0\}}(\alpha)$$

apply scheme 1 and the three-operator DYS

Jacobi parallel ADMM

minimize
$$f_1(x_1) + \cdots + f_m(x_m) + g(\mathbf{x})$$

subject to $A_1x_1 + \cdots + A_mx_m = b$.

- require: convex f_i (possible nonsmooth); convex and smooth g
- examples: LP, QP, basis pursuit, control, exchange problems, ...
- equivalent condition: with dual variable y,

$$0 \in \begin{bmatrix} \partial f_1 & & & -A_1^T \\ & \ddots & & \vdots \\ & & \partial f_m & -A_m^T \\ A_1 & \cdots & A_m & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \\ y \end{bmatrix} + \begin{bmatrix} \nabla_1 g(\mathbf{x}) \\ \vdots \\ \nabla_m g(\mathbf{x}) \\ b \end{bmatrix}$$

introduce the metric

$$U = \begin{bmatrix} I - \sigma \mathbf{A}^T \mathbf{A} & 0 \\ 0 & I \end{bmatrix}$$

where $\mathbf{A} = [A_1, \dots, A_m]$

• obtain the algorithm

$$\begin{cases} x_i^{k+1} = \arg\min_{x_i} f_i(x_i) + \langle \nabla_i g(\mathbf{x}^k) - y + \sigma A_i^T(\mathbf{A}\mathbf{x} - b), x_i \rangle + \frac{1}{2} ||x_i - x_i^k||^2 \\ \forall i = 1, \dots, m \\ y^{k+1} = y^k - \sigma(\mathbf{A}\mathbf{x} - b) \end{cases}$$

- nice properties:
 - all x_i -subproblems can be solved in parallel
 - ∇g and A are applied in an explicit manner

Operator splitting: Decentralized applications

Decentralized computing

• n agents in a connected network G = (V, E) with bi-directional links E

- each agent i has a private function f_i
- **problem**: find a consensus solution x^* to

$$\underset{\mathbf{x} \in \mathbb{R}^p}{\text{minimize}} \ f(\mathbf{x}) := \sum_{i=1}^n f_i(x_i) \quad \text{subject to } x_i = x_j, \ \forall i, j.$$

- challenges: no center, only between-neighbor communication
- benefits: fault tolerance, no long-dist communication, privacy

Decentralized ADMM

Decentralized consensus optimization problem:

ADMM reformulation:

- ADMM alternates between two steps
 - each agent: update x_i while related y_{ij} are fixed
 - each pair of agents (i,j): update y_{ij} and dual var while x_i,x_j are fixed

Primal-dual splitting

problem:

minimize
$$\sum_{i \in V} r_i(x_i) + f_i(x_i)$$
 subject to $W\mathbf{x} = \mathbf{x}$.

where r_i are convex and f_i are convex and smooth

- the mixing matrix $W \in \mathbb{R}^{|E| \times |E|}$:
 - $w_{ij} \neq 0$ only if i = j or agents i, j are neighbors
 - symmetric $W=W^T$, doubly stochastic $W\mathbf{1}=\mathbf{1}.$ thus $I-W\succeq 0$
- consensus: $x_i = x_j, \ \forall (i,j) \in E \Leftrightarrow W\mathbf{x} = \mathbf{x}$ where \mathbf{x} stacks all x_i^T
- equivalent problem:

minimize
$$r(\mathbf{x}) + f(\mathbf{x}) = \sum_{i \in V} r_i(x_i) + f_i(x_i)$$
 subject to $W\mathbf{x} = \mathbf{x}$.

- let $V^T V = \frac{1}{2}(I W)$
- equivalent problem (KKT conditions):

$$0 \in \begin{bmatrix} \partial r & V^T \\ -V & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{q} \end{bmatrix} + \begin{bmatrix} \nabla f(\mathbf{x}) \\ 0 \end{bmatrix}$$

 applying forward-backward splitting with a special metric, skipping details, we obtain

$$\mathbf{x}^{k+1+1/2} = W\mathbf{x}^{k+1} + \mathbf{x}^{k+1/2} - \frac{1}{2}(W+I)\mathbf{x}^k - \alpha \left[\nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k)\right]$$
$$\mathbf{x}^{k+2} = \arg\min r(\mathbf{x}) + \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{x}^{k+1+1/2}\|_F^2$$

this recovers the PG-EXTRA decentralized algorithm

Operator-splitting analysis

How to analyze splitting algorithms?

problem:

find
$$x$$
 such that $0 \in (A+B)x$ and $0 \in (A+B+C)x$

• iteration:

$$z^{k+1} = T(z^k)$$

- require:
 - fixed point z^* of T encodes a solution x^*
 - $\|z^{k+1}-z^*\|<\|z^k-z^*\|;$ sufficiency: T is lpha-averaged, $lpha\in(0,1)$

Averaged operator

- weaker than contractive operators; strong than nonexpansive operators
- T is lpha-averaged, $lpha \in (0,1)$, if for any $z, \bar{z} \in \mathcal{H}$

$$||Tz - T\bar{z}||^2 \le ||z - \bar{z}||^2 - \frac{1 - \alpha}{\alpha} ||(I - T)z - (I - T)\bar{z}||^2.$$

• assume $z^{k+1} = Tz^k$ and $\bar{z} = T\bar{z}$, then

$$||z^{k+1} - \bar{z}||^2 \le ||z^k - \bar{z}||^2 - \frac{1-\alpha}{\alpha}||z^{k+1} - z^k||^2,$$

consequences:

- $||z^{k+1} z^k|| \to 0$
- boundedness of $\{z^k\}$, subsequence $z^{k_j} \to z^*$ weakly
- (by demiclossedness and monotonicity) $z^k \to z^*$ weakly and $z^* = Tz^*$
- $||z^{k+1} z^k||^2 = o(1/k)$ (Davis-Y'15)

Key examples

- A is monotone $\Rightarrow J_{\gamma A}:=(I+\gamma A)^{-1}$ is (1/2)-averaged²
- A is monotone $\Rightarrow R_{\gamma A}$ is nonexpansive
- A is β -cocoercive $\Rightarrow F_{\gamma A} := I \gamma A$ is $(1 \frac{\gamma}{2\beta})$ -averaged
- Baillon-Haddad: if f is convex, ∇f is $\frac{1}{\beta}$ -Lipschitz if and only if ∇f is β -cocoercive

therefore, ∇f is $\frac{1}{\beta}$ -Lipschitz $\Rightarrow I - \gamma \nabla f$ is $(1 - \frac{\gamma}{2\beta})$ -averaged

²also known as "firmly nonexpansive"

Key properties

- T_1 is nonexpansive $\Rightarrow T_2 = (1 \alpha)I + \alpha T_1$ is α -averaged, $\alpha \in (0, 1)$
- T_1, T_2 are nonexpansive $\Rightarrow T_1 \circ T_2$ is nonexpansive
- T_1, T_2 are averaged \Rightarrow $T_1 \circ T_2$ is averaged

Key consequences

- assume A, B are monotone
- B is β -cocoercive, $\gamma \in (0,2\beta) \Rightarrow \mathsf{FBS}\ J_{\gamma A} \circ F_{\gamma B}$ is averaged
- PRS $R_{\gamma A} \circ R_{\gamma B}$ is nonexpansive
- \bullet DRS $\frac{1}{2}I+\frac{1}{2}R_{\gamma A}\circ R_{\gamma B}$ is (1/2)-averaged

Open question

Find an operator-splitting scheme for

$$0 \in (T_1 + \dots + T_m)x, \quad m \ge 4.$$

require:

- no use of auxiliary variable
- ${\color{red} \bullet}$ convergence is guaranteed under monotonic T_i 's

Summary

- monotone operator splitting is a set of powerful and elegant tools for many problems in signal processing, machine learning, computer vision, etc.
- they give rise to parallel, distributed, and decentralized algorithms
- under the hood: fixed-point and nonexpansive-operator theory

not covered: the convergence rates of

• objective error: $f^k - f^*$

 $\bullet \ \ \mathsf{point} \ \mathsf{error} \colon \ \|z^k - z^*\|^2$

accelerated rates by averaging and extrapolation

Thank you!

References:

- H. Bauschke and P. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011.
- N. Komodakis and J.-C. Pasquet. Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Processing Magazine, 2014.
- D. Davis and Y, Convergence rate analysis of several splitting schemes, *UCLA CAM 14-51*, 2014.
- D. Davis and Y, A three-operator splitting method and its acceleration, *UCLA CAM 15-13*, 2015.