Operator Splitting for Parallel and Distributed Optimization

Wotao Yin
(UCLA Math)

Shanghai Tech, SSDS'15 — June 23, 2015

URL: alturl.com/2z7tv

1/69

http://alturl.com/2z7tv

What is “splitting”?

= Sun-Tzu: “EZGEW, &4 (400 BC)
= Caesar: “divide-n-conquer” (100-44 BC)

= splitting in computing:
= break a problem — separate parts
= solve the separate parts — sub-solutions

= combine the sub-solutions in a controlled fashion

2/69

Some basic principles of splitting

split x/y directions

split convection from diffusion in differential equations
split linear from nonlinear

domain decomposition

Bender's decomposition, column generation

split smooth from nonsmooth

split objective functions and constraints in optimization

split composite operators

3/69

Monotone operator-splitting pipeline

. recognize the simple parts in your problem

. build an equivalent monotone-inclusion problem: 0 € Az
(the simple parts are separately placed in A)

. apply an operator-splitting scheme: 0 € Ax — z =Tz

(the simple parts become sub-operators of T')
. run the Krasnosel'skii-Mann (KM) iteration

T =2 AT - 25, M e(0,1)

4

69

Example: LASSO (basis pursuit denoising)

Tibshirani'96:

1
minimize §HA$ —b||* + Al|z|x

2 simple parts: smooth + simple

« smooth function: f(z) = 1||Az — b|]?

2

= simple nonsmooth function: r(z) = Al|z|1
equivalent condition: 0 € Vf(z) + dr(x)

forward-backward splitting algorithm:

2" = prox_, (z" — 4V f(2"))

Taxk

also known as the lterative Soft-Thresholding Algorithm (ISTA)

5/69

Example: total variation (TV) deblurring

» Rudin-Osher-Fatemi’92:

minimize %HKu —b|2 + A Dullx

subject to 0 < u < 255

4 simple parts: smooth + simple o linear + simple

smooth function: f(u) = $||Ku —b|*
linear operator: D
simple nonsmooth function: 71 = A|| - ||

simple indicator function: r2 = ¢[g,255)

6

69

(We only show the results, skipping the details)

= equivalent condition:

0c ors D*| |u n Vi 0| |u
-D orf| |w 0 O0f |w
(where w is the auxiliary (dual) variable)

= forward-backward splitting algorithm under a special metric:

uttt = proj [0,255]" (uk - WD*wk - WVf(Uk))

wht? =prox.,_(w k Jr7D(2ukle uk))

every step is simple to implement

7/69

Simple parts

Simple parts

= linear maps (e.g., matrices, finite differences, orthogonal transforms)
= differentiable functions

= (non-differentiable) functions that have simple proximal maps

= sets that are easy to project to

Abstraction: we look for monotone maps which have certain simple operators

9/69

Monotone map

= A:H — H is monotone if
(Az — Ay,x —y) >0, Vax,yeH
= extend to set-valued A : H — 27
p—q,x—y) >0, Ve,yeH, peAx, g€ Ay

= examples:
= a positive semi-definite linear map
= a skew-symmetric linear map: (Az,z) =0, VzeH

= Jf: subdifferential of a proper closed convex function f

10 /69

Forward operator

= require: A is monotone and either Lipschitz or cocoercive!
= definition: fwda := (I —vA)

= examples:

= forward Euler for y+ g(¢,y) = 0:
y =y =gty = (- heg(t,)y
= gradient descent for min f(z):
e =2 —Vf(a’) = (T -V f)a

= equivalent conditions: 0 € Az <= z = (I —vyA)x

1(A:c — Ay, xz — y) > B||Az — AyH2, Vz,y € H. If Ais B-cocoercive, then A is 1/B-Lipschitz. The
reverse is generally untrue.

11/69

Backward operator

require: A is monotone

definition: J,4 := (I +~A4)™*

equivalent conditions:: 0 € Az & z €z +vyAx & z=Jyax
even if A is set-valued, J, 4 is single-valued

examples:
= regularized matrix inversion

= backward Euler

= proximal map, including projection as a special case

12 /69

Proximal map

require: a proper closed convex function f

definition: 1
pros, ;(y) = argmin f(2) + 5|z~ oI’

the minimizer must satisfy:
0€79f(z") + (2" —y) <= 2" =T +70)""(y) = Jro(y)
therefore, prox_; = Jyor = (I + yOf)~t
proximal-point algorithm (PPA):
B+l

"7 = prox,, (zF)

converges a minimizer of f, if it exists

13 /69

Reflective backward operator

require: A is monotone
definition: R4 :=2J,4 — 1
““reflects” = through J,az by adding Jyax —
examples:

= “mirror” or reflective projection: reflc = 2proj, — I

= reflective proximal map: for closed proper convex function f

Ryor =2Jy0r — I =2prox,; — I

14

69

Operator splitting

15 /69

Monotone inclusion

= Aiq,..., A, are monotone, either single- or set-valued, m > 1

= operator-splitting solves

06A1$+"'+Arn-r

by constructing an operator T4, ,...,4,, : H — H, based on the simple
operators of Ai,..., A, and running the iteration

k41 k
z :TAL---,Am(Z)

16 /69

The “big three” operator-splitting schemes

0 € Az + Bx

Douglas-Rachford (Lion-Mercier'79) for

(maximally monotone) + (maximally monotone)

forward-backward (Mercier'79) for

(maximally monotone) + (cocoercive)

forward-backward-forward (Tseng’00) for

(maximally monotone) + (Lipschitz & monotone)
all the schemes are built from forward operators and backward operators

the first two have been reinvented many times

(in some cases, the reduction not obvious and gone unnoticed)

17 /69

Forward-backward splitting

require: A maximally monotone, B cocoercive (thus single-valued)
forward-backward splitting (FBS) operator (Lion-Mercier'79)
Trps := Jyao (I —vB)
reduces to forward operator if A = 0, and backward operator if B =0
equivalent conditions:
0 € Az + Bx < z = Tras(x)
backward-forward splitting (BFS) operator Tgrs := (I —yB) o0 .Jy4, then

0 € Az + Bx <= z =Tgrs(z), x = Jyaz

18 /69

Douglas-Rachford splitting

require: A, B both monotone

Douglas-Rachford splitting (DRS) operator (Lion-Mercier'79)

1

Tbrs := 5

1
1 aF §R7A o R’yB

note: switching A and B gives a different DRS operator

(relaxed) Peaceman-Rachford splitting (PRS) operator, A € (0, 1]:

TPrs = (1 = A\ + AR,a0 Ryp
also, Trrs = Tiigrs
equivalent conditions:

0€ Az + Bxr < z:TSRS(z), x=JyBz

19/69

Forward-backward-forward splitting

require: A maximally monotone, B monotone and [-Lipschitz, 5 > 0

useful when B is Lipschitz but not cocoercive (e.g., skew symmetric,

convex combination of operators)
forward-backward-forward splitting (FBFS) operator (Tseng'00)
Trgrs :=1+ (I —yB)o Jyao (I —vB) — (I —vB)

reduces to the backward operator if B =0, and to I —yBo (I —B) if
A=0

equivalent conditions: v € (0,1/5)

0 € Ax + Bx <= x = Trars(x)

20

69

A three-operator splitting scheme

require: A, B maximally monotone, C cocoercive
Davis and Yin'15:

Toys :=1—Jyg+ Jyao(2Jyg — I —~vCo J,B)
(evaluating T3z will evaluate J,4, J,5, and C only once each)
reduces to BFS if A=0, FBS if B=0, and to DRSif C =0
equivalent conditions:

0€ Az + Bx+ Cz < z=1T5(2), v = JyB2

21/69

http://www.math.ucla.edu/~wotaoyin/papers/three_operator_splitting.html

Abstraction: KM (Krasnosel’skii-Mann) iteration

require: T is nonexpansive (1-Lipschitz)
choose XA > 0 so that T\ = (1 — X) + AT is an averaged operator

KM iteration:
Ty ok

special cases: Jya, (I —vA), Tres, Ters, Tbrs, TPrs, and Thys

(the step-size of any cocoercive map therein must be bounded)
convergence: if FixT # 0, then z¥ — z* € FixT.

divergence: if FixT = {), then (2");>0 goes unbounded.

22 /69

Operator splitting:

Direct application

Regularization least squares

1
minimize r(x) + §||K:E —o)?
xT

K: linear operator
b: input data (observation)

r: enforces a structure on x.

examples: €3, £1, sorted (1, £, TV, nuclear norm, ...

equivalent condition: 0 € 9r(z) + V f(z)
forward-backward splitting iteration:

k+1 k

z"" =prox,.o(l —yVf)r

24

69

Constrained minimization

= ('is a convex set. f is a proper close convex function.
minimize f(z)
xT
subject to x € C'

= equivalent condition:
0 € Ne(z)+ 0f(x)
= if f is Lipschitz differentiable, then apply forward-backward splitting
K+

2"t = projg o (I — 7V f)a*

recovers the projected gradient method

25 /69

= if f is non-differentiable, then apply Douglas-Rachford splitting (DRS)

2 = (%I + %(2pr0xwf — 1) o (2proj. — I))zk

(where z* = proj,z*)
= dual approach: introduce z — y = 0 and apply ADMM to
minTiI;nze f(x) +e(y)
subject to x —y = 0.

(indicator function tc(y) =0, if y € C, and co otherwise.)

= equivalence: the ADMM iteration = the DRS iteration

26 /69

Multi-function minimization

= fi,..., fm : H — (—o00,00] are proper closed convex functions.
minimize f1(z) + - - + fn(x)
x

= product-space trick:

= introduce copies z(;) € H of z; let x = (2(1),...,2(N)) € HY
. |etC:{X:JJ(1> :~~~:l‘(1\])}

= equivalent problem in H":
N
minimize (¢ (x) + Z fi(zy)
=1

then apply two-operator splitting scheme

27 /69

Operator splitting:

Dual application

Duality

convex (and some nonconvex) optimization problems have two

perspectives: the primal problem and the dual problem
duality brings us:
= alternative or relaxed problems, lower bounds
= certificates for optimality or infeasibility
= economic interpretations
duality + operator splitting:
= decouples objective functions and constraints’ components

= gives rise to parallel and distributed algorithms

29 /69

Lagrange duality

original problem:
minizmize f(x) subject to Az =b.
relaxations:
Lagrangian: L(z;w) = f(z)+w" (Az —b)
augmented Lagrangian: L(z;w,) := f(z) +w’ (Az — b) + ’YHAJU b||?

dual function:
d(w) = — min L(z; w)

(d is always convex, even if f is not)

dual problem:

minimize d(w)
w

30

69

Monotropic programs

definition:
minimize fi(@) + -+ fm(zm)
subject to A1x1 + -+ - ApTm = b.
where f;(x;) may include tc, (z) for constraint z; € C;
zi,...,Tm are separable in the objective and coupled in the constraints
dual problem has the form

minimize di (w) + - - - + dm (w)

where d;(w) := —ming, fi(z;) +w" (Aiz; — Lb)

31/69

Examples of monotropic programs

linear programs
min{f(z) : Az € C} & ming {f(z) + tc(y) : Az —y =0}

consensus problem min{fi(z1) + -+ + fn(zn) : Ax = 0}, where
s Ar=0x1 = =Tn,
= the structure of A enables distributed computing

exchange problem

32/69

Dual (Lagrangian) decomposition

minimize fi(z1) + -+ fm(Tm)

Tl Tm

subject to A1x1 + - + Amxm = 0.

= the variables z1,...,x,, are decoupled in the Lagrangian
- 1
L(zi,...,xn;w Z Aasl—mb)

(but not so in the augmented Lagrangian for 2 ||A1z1 + -+ Apmam — b||%)

33/69

let A=[A1 -+ An] and x = [21;...;Zm]

the dual gradient iteration

x" ! = argmin L(x"; w")

x/

W = w — (b — AXFTY)
the first step decouples to m separate subproblems

1
oyt = argmin fi(2}) + w7 (Aiz — =b), i=1,...,m
! m

this decomposition requires strongly convex fi,..., fm or, equivalently,
Lipschitz differentiable d1, ..., dm

(dual PPA doesn't have this requirement, but the first step doesn't
decouple either)

4 /69

Dual forward-backward splitting

original problem:

minizmize fi(z) + f2(y) subject to Arx1 + Asxa = 0.
require: strongly convex f1 (thus Lipschitz Vdi)
FBS iteration: 2" = prox_,, (I — yVdi)z*

express in terms of (augmented) Lagrangian:

k41 . kT
25T = argmin f1(z}) + w7 A1)
’
x
1

a5t € arg r,nin fo(zh) + w* Agzh + %HAlxlfH + Aszh — b|?

Lo

Wt = w — (b — Ayt — Agahth

we have recovered Tseng's “Alternating Minimization Algorithm”

35/69

Dual Douglas-Rachford splitting

original problem:

minizmize fi(z) + f2(y) subject to A1x1 + Asxa = 0.
no strong-convexity requirement
DRS iteration: z"t! = (%I + 3 (2prox. 4, — I)(2prox., — I))zk
express in terms of augmented Lagrangian:

" argmin fi (o)) + W A1 2] + %HAlx/l + Aozl —b)?

LS

a:SH € arg {nin fa(xh) + w*T Agxh + %HAla:’fH + Aszh — bH2

Lo

whtt = wh — (b — AT — Aszh ™)

recover the Alternating Direction Method of Multipliers (ADMM)

36

69

Dual Davis-Yin splitting
original problem, m > 3:
minizmize fi(z1) + -+ fm(zm) subject to A1z1 + -+ Amzm = .
require: strongly convex fi,..., fm—2
Davis-Yin'15 iteration: z*t! = T32" for (di+ - +dm-2)+dm-1+dn

express in terms of (augmented) Lagrangian:

xf“ = argmin f1 (z}) + w*T Az}, i=1,...m —2, independently

xZ .
i
m—2
k1
Lk
! i—m—
@y J=m—1 i=1

m—1
ke ar%:nn Fom (@) + w*T Ayt + %H ; Aif T A, — b”2

m
Wt = wh — ’y(b — ZAZ-J:?H)
i=1

m € argmin f;(z}) + wkTA]-x; + %H Z Azt 4 Az + Azt —

blf

37/69

Dual operator splitting summary

for problems with separable objective and coupling linear constraints
each iteration: separate f; subproblems + multiplier update

Lagrangian x;-subproblems require strongly convex f; and can be solved
in parallel

augmented Lagrangian xz;-subproblems does not have the

strong-convexity requirement but are solved in sequence

38/69

Operator splitting:

Primal-dual application

Nonsmooth o linear composition

problem: minimize nonsmooth o linear + nonsmooth + smooth
minizmize ri(Lz) + r2(z) + f(x)
equivalent condition:
0 (LT 0drioL+drs+Vf)zx
decouple Or; from L: introduce
dual variable y € 9ri o Lz <= Lx € 9ri(y)

equivalent condition:

0 LT| [z Ora(z) Vf(x)
o % BIE+) <[5

40

69

equivalent condition (copied from last slide):

0 LT| [z Ora(z) Vf(z)
Oe{—L 0 | {y%[arr(y)}*{ 0 }

Az Bz

primal-dual variable: z = {x
Y]

apply forward-backward splitting to 0 € Az + Bz:

k+1 k
V4 + :erAOF'yBZ

— =T +~4)7'(I -+B)s*

LRt +7LTyk+1 +76r2(xk+1) — gk ’ny(xk)
solve k+1 k1 .5 (o k1 k
Yt =Lt 4yt =y

1 k+1

issue: both "' and y appear in both equations!

41 /69

= solution: introduce the metric

I —~LT
U:[K }»o
—~L I

= apply forward-backward splitting to 0 € U~ ' Az + U~ ' Bz:

k+1 k
z = yU*lAOFqule

= M =T +4U AT AU ' B)"
< solve Uz"" + 71212’“+1 =UzZ" - 'szk

xk+1_,\/LTyk+l + ,YLTka + ’y%rg(azkﬂ) _ xk_,_\/LTyk _ nyf(mk)
<~
yk+17,yL o ’yLz:IH'l —|—’yV7"f(yk+1) _ yk*“,«’L ok

1

(like Gaussian elimination, y* T is cancelled from the first equation)

42 /69

k+1 k+1

strategy: obtain x from the first equation; plug in x as a constant

into the second equation and then obtain y**!

final iteration:

a"*t = prox,,, (z" — yLTy" — 4V f(z"))

y* = prox_,. (y* + yL(22"" — 2*))

1
nice properties:
= apply L and V f explicitly
= solve proximal-point subproblems of r1 and 72

= convergence follows from standard forward-backward splitting

43 /69

Example: total variation (TV) deblurring

» Rudin-Osher-Fatemi’92:

minimize %HKu —b|2 + A Dullx

subject to 0 < u < 255

4 simple parts: smooth + simple o linear + simple

smooth function: f(u) = $||Ku —b|*
linear operator: D
simple nonsmooth function: 71 = A|| - ||

simple indicator function: r2 = ¢[g,255)

44

69

(We only show the results, skipping the details)

= equivalent condition:

0c ors D*| |u n Vi 0| |u
-D orf| |w 0 O0f |w
(where w is the auxiliary (dual) variable)

= forward-backward splitting algorithm under a special metric:

uttt = proj [0,255]" (uk - WD*wk - WVf(Uk))

wht? =prox.,_(w k Jr7D(2ukle uk))

every step is simple to implement

45 /69

Operator splitting:

Parallel and distributed applications

46 /69

Huge matrix A

= background: you wish to distribute a huge matrix A in your problem
= three schemes to distribute A:

—Aw— \ | Ain o Aiw
: Ay - A
—An—, ‘ ‘ Ava - AunN

scheme 1 scheme 2 scheme 3

47 /69

= broadcast then parallelize: schemes 1 & 2:
A(1>x A?y
Az = and ATy =
A(]y[).%’ A%y

= parallelize then reduce: schemes 1 & 2:
M N
ATy = ZA(Ti)yi and Az = ZAjmj
i=1 j=1

= broadcast, parallelize, then reduce: scheme 3:

N M
Zj:l Arja; Zi:l Azlyi
Ax = : and ATy = :

N M
> et Anj; > imy AiNyi

48 /69

choose a scheme baesd on the structures of functions/operators

= example: convex and smooth f; convex r (possibly nonsmooth)
minimize r(x) + f(Ax)
= case 1: scheme 1 for separable f, thatis, f(Az) =>_" iy Ji(AwT)
apply forward-backward splitting

oA = proxw(:ck — yATV f(Az"))

= prox., (Cﬂk - Z A?;) Vfi(A(i)mk»

=1

we can distribute/parallelize Aani(A(i)xk)

49 /69

= scenario 2: scheme 2 for separable r
prox.,. (y1)
prox,, (y) = :
prox.,. . (yn)
apply forward-backward splitting:
= proxw(a:’C — ATV f(Az"))
cache g = Vf(Az")
mlf+1 prox'yrl (asllc - 'YA’{Q)
‘rk+1 prox'er (mN FYA)
broadcast g = Vf(ZM Aj mk+1)

we distribute the computing of A;z}*" = Ajprox,, (zh — AT g)

this is also known as parallel coordinate descent

50/69

= scenario 3: scheme 3 for separable f and r (we skip the details)

= remarks:
= no introduction of extra variables, no sacrifice of convergence speed

= the principle also applies to other operator splitting schemes

= can be further accelerated by asynchronous parallelism

51/69

Duality and structure trade

—Aqy—
assume scheme 1: A= :

— Ay —
primal problem: strongly-convex r and convex nonsmooth fi,..., fm.:

minimize r(w) + ZZI fi(Apw)
structure: strongly-convex + Z nonsmooth o linear
let f*(y) = sup,(y,z) — f(x) denote the convex conjugate of f

dual problem:

minimize r*(— Z:;l A(Tm)yi) + Z:;l 17 (yi)

Y

dual structure: smooth o linear +) nonsmooth

52 /69

Example: support vector machine (SVM)

given sample-label pairs (z, ;) where z; € R? and y; € {1, -1}
primal problem:
mirg%ize sllwl?+ 37 ey (yi(aza)w —b) — 1)
dual problem:
max{ilmize quadratic(a) + 7" | iy (@) + Liyyar 4o tymam=0} (@)

apply scheme 1 and the three-operator DYS

53 /69

Jacobi parallel ADMM

minimize fi(2z1) + -+ + fn(Tm) + g(x)

X=(Z1,..,Tm

subject to A1x1 + -+ Apmxm = b.

= require: convex f; (possible nonsmooth); convex and smooth g
= examples: LP, QP, basis pursuit, control, exchange problems, ...
= equivalent condition: with dual variable y,
df1 —AT7 [Vig(x)
0e : : :

(9fm —Aﬁ Tm Vmg(x)
A o An 0 y b

54 /69

introduce the metric
U [1 —oATA o]

where A = [A1,..., Ap]

obtain the algorithm

ot = argmin, fi(z:) + (Vig(x") —y + 0 AT (Ax — b), z1) + g lws — 27 ?

Vi=1,...,m

Yl =k — o(Ax —b)

nice properties:
= all x;-subproblems can be solved in parallel
= Vg and A are applied in an explicit manner

55/69

Operator splitting:

Decentralized applications

56 /69

Decentralized computing

n agents in a connected network G = (V, E) with bi-directional links E

each agent i has a private function f;

problem: find a consensus solution x* to

n
migeiflgjize f(x):= Zf,(xl) subject to z; = x;, Vi, .
i=1

challenges: no center, only between-neighbor communication

benefits: fault tolerance, no long-dist communication, privacy

57 /69

Decentralized ADMM

= Decentralized consensus optimization problem:

e ey £

subject to z; = z;, V(i,j) € E
= ADMM reformulation:

minimize . i(Ti
@i i€V, Y, (1.0)EB Liev fil@)

subject to i = vyij, Tj = Yij, V(Z,j) ek

= ADMM alternates between two steps

= each agent: update x; while related y;; are fixed
= each pair of agents (4,7): update y;; and dual var while z;, x; are
fixed

58 /69

Primal-dual splitting

problem:
m:icﬂiilél‘i/ze ZiEV ri(x;) + fi(z:) subject to Wx = x.

where r; are convex and f; are convex and smooth

the mixing matrix W ¢ RIZIXIEl.

= w;; # 0 only if i = j or agents ¢, j are neighbors
« symmetric W = W7, doubly stochastic W1 = 1. thus I — W > 0

consensus: x; = x;, V(i,j) € E < Wx = x where x stacks all]

equivalent problem:

minimize 7(x) + f(x) =3, ri(z:i) + fi(z:i) subject to Wx = x.

x;,i€V

59 /69

s let VIV =1(1-W)
= equivalent problem (KKT conditions):
0c or VT [x . Vf(x)
-V 0 q 0
= applying forward-backward splitting with a special metric, skipping
details, we obtain
X2 2 sk L gt a6 -]

k42

1
X = argminr(x) + 27”)(_ xk+1+1/2“%
«

this recovers the PG-EXTRA decentralized algorithm

60 /69

Operator-splitting analysis

61 /69

How to analyze splitting algorithms?

= problem:
find = suchthat 0 € (A+B)x and 0€ (A+B+C)z

= jteration:

= require:

= fixed point 2* of T' encodes a solution z*

-l - <l -2

|; sufficiency: T is a-averaged, o € (0, 1)

62 /69

Averaged operator

= weaker than contractive operators; strong than nonexpansive operators

= T is a-averaged, o € (0, 1), if for any z,Z € H

1—«
|

1Tz - T2|* < ||z — 2)|* — (I-T)z— (I =Tz

«@
» assume 2"t = T2% and z = Tz, then

k2
Z|

1 —
251 — 22 < ||2F - 2] = =2 || - 2R
(0%

consequences:
S)
» boundedness of {z*}, subsequence z"i — z* weakly
+ (by demiclossedness and monotonicity) z* — z* weakly and z* = T'z*
o |[2FT — 2F||2 = 0(1/k) (Davis-Y'15)

63 /69

Key examples

= Ais monotone = Jya := (I+~A)"!is (1/2)-averaged?
= A is monotone = R.,4 is nonexpansive

» Alis B-cocoercive = Fya:=1—~vAis (1 — j;)-averaged

= Baillon-Haddad: if f is convex, Vf is %-Lipschitz if and only if Vf is
[3-cocoercive

therefore, V f is %—Lipschitz = I—~Vfis(1— %)—averaged

2 T P
also known as “firmly nonexpansive
64 /69

Key properties

= Ty is nonexpansive = Tb = (1 —)l + T is a-averaged, o € (0,1)
= T4,T5 are nonexpansive = T oT5 is nonexpansive

= T4,T5 are averaged = 717 oT5 is averaged

65 /69

Key consequences

assume A, B are monotone

B is -cocoercive, v € (0,28) = FBS J,4 o F,p is averaged

PRS R, 4 o R,p is nonexpansive
DRS 11+ 2R, 4 0 Ryp is (1/2)-averaged

C'is B-cocoercive, v € (0,203)
= DYS I — nyB —|—Jf\/A o (2J'yB — I—’)/CO J'yB)

is 28

B

-averaged

66

69

Open question

Find an operator-splitting scheme for

0Oe(Ti+-+Twm)x, m>4

require:

= no use of auxiliary variable

= convergence is guaranteed under monotonic T;'s

67 /69

Summary

= monotone operator splitting is a set of powerful and elegant tools for many

problems in signal processing, machine learning, computer vision, etc.
= they give rise to parallel, distributed, and decentralized algorithms

= under the hood: fixed-point and nonexpansive-operator theory

not covered: the convergence rates of
= objective error: f* — f*
= point error: ||zF — z*||?

= accelerated rates by averaging and extrapolation

68

69

Thank you!

References:

= H. Bauschke and P. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces. Springer, 2011.

= N. Komodakis and J.-C. Pasquet. Playing with duality: an overview of
recent primal-dual approaches for solving large-scale optimization
problems. IEEE Signal Processing Magazine, 2014.

= D. Davis and Y, Convergence rate analysis of several splitting schemes,
UCLA CAM 14-51, 2014.

= D. Davis and Y, A three-operator splitting method and its acceleration,
UCLA CAM 15-13, 2015.

69 /69

